故障計算プログラム エクセルシート(VBA使用)   ホームページに戻る   デジタルリレー製作

 三相交流の故障計算を自動で行い、その結果をベクトル表示させます。
 
計算は、次項の対象座標法に基づいて行っています。
不平衡故障時の故障様相理解の一助になると思います。
 一様、計算結果は検証しているつもりですが完全に保障できるものではありません。実計算
使用については
 ご配慮ください。(当方は責任もてません)

 H29.2.2 ver1.1 
  2ΦSにRyの見るインピーダンンス・線間電圧値表示追加、および一部不具合修正
  短絡方向距離継電器(DZ-Ry)の特性図追加

  故障計算(エクセルVBA)

 使用方法

 操作方法

  インピーダンス(Z)入力

    正相分の値(電源、線路)を入力 (すべて実オーム値、Cは絶対値とする'-'不要)
    零相分は中性点接地抵抗の抵抗値を選択する(非接地系統(高抵抗)の場合、10000を選択)
    
なお、逆相分は正相分と等しく、零相分はR/Lは正相の80%固定とした(一般値)

   ・線間電圧   系統電圧を入力
   ・故障点抵抗  故障点の抵抗値を入力 77kVクラスで数〜十数Ω(一般値)
   ・故障地点   線路故障位置を設定する 0%:Ry設置点(ZL=0)、100%:線路末端
   ・
故障種類選択 1ΦG(a相)、2ΦS(bc相)、2ΦG(bc相)を選択する
   ・
実行     実行ボタンを押す

  結果の見方

   ベクトルは左側が故障点、右側がRy設置(観測地点)を表している
   線種 実線:故障時相電圧、一点鎖線:故障時相電流(長さ固定)、点線:故障前相電圧
   
色  青:a相、黒:b相、赤:c相水色:零相

    θは故障前のa相電圧基準

対象座標法による故障計算

対象座標法の概要を説明します。
1.対象座標法
 (1)概要
  
  3相回路を扱う場合、3相負荷が平衡している場合には単相回路と同じように扱えるが、
   不
平衡の場合非常に計算が複雑になる。(故障においては3φS・Gは平衡負荷、
   1φG/
2φS・G/断線故障は、不平衡負荷が接続された場合と等価)
    
対象座標法は、電圧(電流)ベクトルをR分とX分に分けて扱うと同じように三相回路を正相・
   逆相・零相分に分けて考え単相回路と同じように計算してから、それを合成して各相の電
圧・電流を
   求める手法であり、故障計算に適している。

  TAI001.GIF - 1,289BYTES

                                 図1

 (2)考え方
    3相電源(電圧)は、正相分V・逆相分V(正相とローテーションが逆)・零相分
    
(3相とも同じベクトル量)の成分の合成と考える。
    
電流も、電圧と同様でそれぞれ対象成分を、I・I・Iとしそれを合成したものが
   
各相の電流になる。
    
回路のインピーダンスはそれぞれの成分に作用するインピーダンスZ・Z(=Z)・
   
(3相を一括して対地間に単相電源を加えたときに作用するインピーダンス)を用いる。
    
対象分から各相電圧(電流も同様)に合成する式

             TAI003.GIF - 1,497BYTES

     各相電圧(電流も同様)から対象分を計算する式 

             TAI005.GIF - 1,093BYTES

     発電機基本式
     
各対象分を単相回路として、考えると次式のようになる。
    
(逆相・零相分の電圧は、3相が平衡しているため0)

                     TAI007.GIF - 1,344BYTES

  (3)計算手順

    対象座標法を用いた、計算手順を1φGを例に説明する。
   
無負荷発電機(中性点はRNで接地)a相が故障点抵抗RFを通じて地絡した時のIa,Va,Vb,Vc,
   Vo,Io
を求める。

      故障条件から、

        TAI009.GIF - 3,373BYTES

         E式から正相・逆相・零相回路がシリースになることが分かり、F式からV1V2V0
  加えたもの(
Va)が3IRFに等しいことが分かる。以上を等価回路にすると図3の
ようになる。

   TAI011.GIF - 4,310BYTES

   図3から、

          TAI013.GIF - 1,647BYTES


  以上のように、求めることができる。 手順を要約すると、
   
@ 故障条件から三つの式をたてる
   
A @式から、対象分の電圧・電流を解く
   
B A式から、等価回路をつくる。
   
C 等価回路から、対象分を計算する
   
D 対象分から、各相の電圧・電流を求める
  
以上の計算は、故障点における電圧を求めたが保護継電装置(以下Ry)設置点における電圧は、
 各対象分に作用するZを、系統側
Z、線路側Zに分けて考え対象分の電圧を分圧
させ、合成すれば先の例と
 同様に、求められる。

           TAI008.GIF - 2,553BYTES

2.故障計算例
  
正相インピーダンスを仮定して各故障(1φG・2φS・2φG)における、故障点・Ry設置点のベクトルを求めた。
  
(電圧77kV、中性点抵抗200A、電源1+j5,線路2+j10、R/Lの零相Zは正相Zの0.8で固定、故障点抵抗は10Ω)
  
なお計算は、対象座標法で導き出した式をエクセル(VBA)によって計算・ベクトル表示した。

 (1)1φG
        前記計算式に定数を代入しベクトル図にした。

        TAI019.GIF - 6,680BYTES

    ほとんど完全地絡に近いのでVaはほとんど0Vで、健全相は相電圧のほぼ√3倍となる。
   故障(地絡)電流は200A弱なので、Ry設置点の電圧は故障点とほとんど大差が
ない。
   
Ia(地絡電流=3Io)の位相は、RN≫(Gの△のX分)なのでEaより若干遅れ
る。
   
Voは完全地絡時に相電圧の大きさとなる。 又、Voの位相は、EaIo)の180゜
方向に発生する。

 (2)2φS(bc相)

    2φS故障の等価回路は、正相回路と逆相回路が並列になった回路である。(零相回路 は無関係)

               TAI021.GIF - 2,503BYTES
          
   
  Ibの位相は、Iより90゜遅れとなる。Iは、△のX分とR分の比によってEaとの位相がきまる。
    (この例では、70゜)よって、
IbEaより160゜遅れとなる。
    
Vb(Vc)は、IRFにa(a)を掛けたものからI1Z2を引いたものになるから、図のようなベクトルとなる。
    
代表的な短絡Ryには、インピーダンスRyがあり線間電圧と線電流の差からZを求めているが、
    この電圧と電流の位相差は線路Z及び故障点抵抗のZ角により決まり、通常
60〜80度の電流遅れとなる。
    (故障点は線路85%地点における完全短絡)

 (3)2φG(bc相短絡しRFを通じ地絡)

    2φGの等価回路は、2φSの等価回路にRFを通じ零相回路が並列になった回路である。

     TAI029.GIF - 3,491BYTES

   TAI035.GIF - 5,885BYTES

   VaZ=Z2Zo3RFであるので、Va1.5Eaとなる。VoVa-EaなのでEaと同相方向で約0.5Eaとなる。
      なお
VoIo)位相は1φGとは逆方向である。
     
故障点のVb(=Vc)は、RFと地絡電流の積なのでほとんど0電位に近い、Ry設置点では線路Z
      によって図7のような電圧となる。
     
Ib(Ic)は、近似式から−180+α゜(+α゜)方向となる。

3.計算結果

  2の計算結果をまとめると次のようになる。

故障種類

故   障   様   相

1φG

Voは最大相電圧
VoIo位相180゜(実故障では背後等のC分によりIo170゜前後遅)
健全相の対地電圧線間電圧まで上昇(Voの分上昇)

2φS

故障電圧(線間電圧)と故障電流(線電流の差)の位相は、線路Zと故障点抵抗の和のZ角によって決まる(電流遅れ6080゜)

2φG

Voは1φGと反対方向で最大相電圧の半分
VoIo位相180゜(実故障では背後等のC分によりIo170゜前後遅)健全相の対地電圧故障前の約1.5倍(Voの分上昇)

    ◇一線地絡(1φG)と二線地絡(2φG)の判定

     1φGと2φGではVoVo反転)の位相が異なり、健全△電圧に対し頂点方向となるのが
         1φGで、辺方向となるのが2φGであるので、これを利用して一線地絡の検
出を行っている。

   TAI036.GIF - 3,418BYTES       

                                       図7

  以 上